ROUND I: ALGEBRAIC WORD PROBLEMS - MOTION, MIXTURE, AGE, COIN, ANGLE, INTEGER

1. Find three consecutive integers whose sum is 17 more than the largest integer.
2. Bob's father is 5 years less than three times as old as Bob. When Bob was born, his father was 25. How old is Bob?
3. An automobile is to travel from town T to city C and return. The distance from T to C is m miles. For the first two hours of the trip the automobile travels at a rate of x miles per hour. At what rate must it travel the remaining distance to complete the trip in four hours?

ANSWERS: (1 point) 1.
(2 points) 2.
(3 points) 3. \qquad

Bromfield, Hudson, Quaboag

March 5, 1980 WOCOMAL FRESHMAN MEET
ROUND II: STATISTICS - MEAN, MEDIAN, NODE, GRAPHS

1. Find the mean of the data given in the graph

2. In a list of five integer measurements, the low is 2, the high is 7, the mean is 4 and the mode is 3. In increasing order, what are the five measurements?
3. Find the mean of a, b, and c, if the mean of the following set of scores is $75: 88,66,85,47, a, 75, b, c, 78,86,93$.

ANSWERS: (1 point) 1.
(2 points) 2. \qquad
(3 points) 3. \qquad

St. John's, Shrewsbury, Worcester Academy

1. Given the function $f(x)= \begin{cases}x, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -x, & \text { if } x<0\end{cases}$ and a domain set $A=\{-2,-1,0,3,10\}$. State the range.
2. Find a number in base 3 which is equal to (123) 7°
3. A man plants 12 rows of beans, each 10 meters long. The plants in each row are spaced 50 centimeters apart. If the first and last plants in each row are 25 centimeters from the ends of the row, what is the total number of plants in the garden?

ANSWERS: (1 point) 1 . \qquad

(3 points) 3.

Hudson, Marlboro, South

March 5, 1980 WOCOMAL FRESHMAN MEET
ROUND IV: OPERATIONS ON POLYNOMIALS

1. From the sum of $x^{3}+x^{2}+3$ and $2 x^{3}+x^{2}-5 x$ subtract $-5 x+3$.
2. Find the volume of a cube in simplified polynomial form if each edge has length $2 x+5$.
3. Find k so that $x-3$ will be a factor of $x^{3}-2 x^{2}+k x-3$.

ANSWERS: (1 point) 1.
(2 points) 2.
(3 points) 3.

Shrewsbury, Tantasqua, Wachusett

TEAM ROUND: FACTORING

EACH QUESTION COUNTS THREE POINTS
FACTOR COMPLETELY AND SIMPLIFY EACH FACTOR WHEN POSSIBLE.

1. $3 x^{2}+21 x+36$
2. $x^{2}-4 x-y^{2}+4$
3.
4. $3 x^{2}+4 x-3 x y-4 y$
5. $12(x+2)^{2}+11(x+2)-15$
6.
7. $3 x^{4} y-24 x^{3} y+48 x^{2} y$
8.
9. $a^{2}-b^{2}+2 b c-c^{2}$
10. \qquad
11. $32 x^{4}-144 x^{2}+162$
12. \qquad
13. $a^{2}-2 a b+b^{2}+9 a-9 b+20$
14.

Auburn, Bromfield, Shepherd Hill, Southbridge, Tantasqua, Worcester Academy

ROUMD 1
(4 point a, 8, 9,20
(2 pon期) 2. 5
(3 ponts) 3. Man

MEAR RCUUE
WREE WOTHT W ECR

1. $3(x+3)(3+4)$

roung 1
(1) point H . 5
(3 potnta) 2. 2, 38 3 5 7 7
(3 pointre) 3. 6\%
2. (4x $6+5(3 x+41)$

ROUNE IUS

5. $3 x^{2} y(x-4)^{2}$
6. $(3 x+4)(x-y)$

\{2 ponnts) 2. (21, $)^{2}$
(3 pobrte) 3. 240

-

7. $2(2 x+3)^{2}(2 x-3)^{2}$

ROUND IY
(2 point) i. $3 x^{3}+2 x^{2}$
8. $\left.\quad(a-b+4)\binom{5}{5}+4\right\}$
(2 petats) 2. $3 x^{3}+60 x^{2}+150 x+225$

